Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(12): 123202, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579236

RESUMO

We studied strong-field multiphoton ionization of 1-iodo-2-methylbutane enantiomers with 395 nm circularly polarized laser pulses experimentally and theoretically. For randomly oriented molecules, we observe spin polarization up to about 15%, which is independent of the molecular enantiomer. Our experimental findings are explained theoretically as an intricate interplay between three contributions from HOMO, HOMO-1, and HOMO-2, which are formed of 5p-electrons of the iodine atom. For uniaxially oriented molecules, our theory demonstrates even larger spin polarization. Moreover, we predict a sizable enantiosensitive photoelectron circular dichroism of about 10%, which is different for different spin states of photoelectrons.

2.
Phys Chem Chem Phys ; 24(44): 27121-27127, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342321

RESUMO

During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

3.
Phys Rev Lett ; 128(5): 053001, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179929

RESUMO

We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with hν=40 keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of the electron Compton profile. To reproduce these results, nonrelativistic calculations require the use of highly correlated initial- and final-state wave functions.

4.
Phys Rev Lett ; 127(10): 103201, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533326

RESUMO

We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s photoelectrons in coincidence with fragment ions, we deduce the molecule's orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by ab initio electronic structure calculations. Providing such a pronounced contrast makes PECD of fixed-in-space chiral molecules an even more sensitive tool for chiral recognition in the gas phase.

5.
Phys Rev Lett ; 126(8): 083201, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709766

RESUMO

We investigate the differential ionization probability of chiral molecules in the strong-field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. By resolving for the molecular orientation, we show that the photoion circular dichroism signal strength is increased by 2 orders of magnitude.

6.
Nat Commun ; 12(1): 1697, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727546

RESUMO

When a very strong light field is applied to a molecule an electron can be ejected by tunneling. In order to quantify the time-resolved dynamics of this ionization process, the concept of the Wigner time delay can be used. The properties of this process can depend on the tunneling direction relative to the molecular axis. Here, we show experimental and theoretical data on the Wigner time delay for tunnel ionization of H2 molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the emitted electrons, which occur due to spatial shifts of the electrons' birth positions after tunneling. Our work provides therefore an intuitive perspective towards the Wigner time delay in strong-field ionization.

7.
Phys Rev Lett ; 126(5): 053202, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605768

RESUMO

Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic nondipole effect is not the only nondipole effect in strong-field ionization. We find that an electric nondipole effect arises that is due to the position dependence of the electric field and which can be understood in analogy to the Doppler effect. This electric nondipole effect manifests as an increase of the radius of the donut-shaped photoelectron momentum distribution for forward-directed momenta and as a decrease of this radius for backwards-directed electrons. We present experimental data showing this fingerprint of the electric nondipole effect and compare our findings with a classical model and quantum calculations.

8.
Phys Rev Lett ; 127(27): 273201, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061406

RESUMO

We present experimental data on the nonadiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schrödinger equation (TDSE). Experiment and TDSE show four above-threshold ionization peaks in the electron's energy spectrum. The most probable emission angle (also known as "attoclock offset angle" or "streaking angle") is found to increase with energy, a trend that is opposite to standard predictions based on Coulomb interaction with the ion. We show that this increase of deflection angle can be explained by a model that includes nonadiabatic corrections of the initial momentum distribution at the tunnel exit and nonadiabatic corrections of the tunnel exit position itself.

9.
Phys Rev Lett ; 123(19): 193001, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765203

RESUMO

We investigate K-shell ionization of N_{2} at 40 keV photon energy. Using a cold target recoil ion momentum spectroscopy reaction microscope, we determine the vector momenta of the photoelectron, the Auger electron, and both N^{+} fragments. These fully differential data show that the dissociation process of the N_{2}^{2+} ion is significantly modified not only by the recoil momentum of the photoelectron but also by the photon momentum and the momentum of the emitted Auger electron. We find that the recoil energy introduced by the photon and the photoelectron momentum is partitioned with a ratio of approximately 30∶70 between the Auger electron and fragment ion kinetic energies, respectively. We also observe that the photon momentum induces an additional rotation of the molecular ion.

10.
Sci Adv ; 5(3): eaau7923, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30873429

RESUMO

Chirality is omnipresent in living nature. On the single molecule level, the response of a chiral species to a chiral probe depends on their respective handedness. A prominent example is the difference in the interaction of a chiral molecule with left or right circularly polarized light. In the present study, we show by Coulomb explosion imaging that circularly polarized light can also induce a chiral fragmentation of a planar and thus achiral molecule. The observed enantiomer strongly depends on the orientation of the molecule with respect to the light propagation direction and the helicity of the ionizing light. This finding might trigger new approaches to improve laser-driven enantioselective chemical synthesis.

11.
Phys Rev Lett ; 123(24): 243201, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922823

RESUMO

We investigate angular emission distributions of the 1s photoelectrons of N_{2} ionized by linearly polarized synchrotron radiation at hν=40 keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of the molecular fragmentation. In particular, photoelectrons are predominantly emitted in the direction of the forward nitrogen atom. This observation cannot be explained via asymmetries introduced by the initial bound and final continuum electronic states of the oriented molecule. The present simulations assign this asymmetry to a novel nontrivial effect of the recoil imposed to the nuclei by the fast photoelectrons and high-energy photons, which results in a propensity for the ions to break up along the axis of the recoil momentum. The results are of particular importance for the interpretation of future experiments at x-ray free electron lasers operating in the few tens of keV regime, where such nondipole and recoil effects will be essential.

12.
Phys Rev Lett ; 121(16): 163202, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387676

RESUMO

We report on the nonadiabatic offset of the initial electron momentum distribution in the plane of polarization upon single ionization of argon by strong field tunneling and show how to experimentally control the degree of nonadiabaticity. Two-color counter- and corotating fields (390 and 780 nm) are compared to show that the nonadiabatic offset strongly depends on the temporal evolution of the laser electric field. We introduce a simple method for the direct access to the nonadiabatic offset using two-color counter- and corotating fields. Further, for a single-color circularly polarized field at 780 nm, we show that the radius of the experimentally observed donutlike distribution increases for increasing momentum in the light propagation direction. Our observed initial momentum offsets are well reproduced by the strong-field approximation. A mechanistic picture is introduced that links the measured nonadiabatic offset to the magnetic quantum number of virtually populated intermediate states.

13.
Phys Rev Lett ; 121(17): 173003, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411931

RESUMO

We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism.

14.
Phys Rev Lett ; 121(8): 083002, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192586

RESUMO

We report on a direct method to measure the interatomic potential energy curve of diatomic systems. A cold target recoil ion momentum spectroscopy reaction microscope was used to measure the squares of the vibrational wave functions of H_{2}, He_{2}, Ne_{2}, and Ar_{2}. The Schrödinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape of the potential.

15.
Phys Rev Lett ; 120(22): 223204, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906162

RESUMO

We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

16.
Nat Commun ; 9(1): 2259, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872047

RESUMO

The original version of this Article contained an error in the fifth sentence of the first paragraph of the 'Application on H2' section of the Results, which incorrectly read 'The role of electron correlation is quite apparent in this presentation: Fig. 1a is empty for the uncorrelated Hartree-Fock wave function, since projection of the latter wave function onto the 2pσu orbital is exactly zero, while this is not the case for the fully correlated wave function (Fig. 1d); also, Fig. 1b, c for the uncorrelated description are identical, while Fig. 1e, f for the correlated case are significantly different.' The correct version replaces 'Fig. 1e, f' with 'Fig. 2e and f'.

17.
Rev Sci Instrum ; 89(4): 045112, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716368

RESUMO

Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency ε is as high as possible, as the overall efficiency scales with εn, i.e., the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced "funnel MCPs." Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The "funnel" MCPs exhibit an efficiency of approximately 90%, gaining a factor of 24 (as compared to "normal" MCPs) in the case of a five-fold ion coincidence detection.

18.
Phys Rev Lett ; 120(4): 043202, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437459

RESUMO

The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6×10^{13} W/cm^{2} has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe^{+} ions in the ground state (J=3/2, ionization potential I_{p}=12.1 eV) and the first excited state (J=1/2, I_{p}=13.4 eV) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J=1/2 than for the J=3/2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

19.
Nat Commun ; 8(1): 2266, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273745

RESUMO

The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...